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概要
本講演の内容は非退化とは限らないアファインはめ込みの絶対全曲率の最小性と凸性の関係
について述べることである．Koike により，一般余次元の 等積アファインはめ込みについての
Chern–Lashof 型不等式が得られている．本講演では，絶対全曲率が最小値 2をとるとき像が必
ず (n+ 1) 次元アファイン部分空間に含まれることを示し，さらに凸超曲面であることと同値に
なるという結果について紹介する．

1 序論
n, r を正の整数とし，f : (M,∇, θ) −→ (Rn+r, ∇̃, ω̃) を等積構造を備えた n次元多様体から自然

な等積構造を備えた (n + r)次元アファイン空間へのアファインはめ込みとする．もし transversal

bundle N と，N 上の体積要素 θ⊥ が存在して，M 上の等積構造 (∇, θ) が (N, θ⊥) から誘導され
るならば，f を 等積アファインはめ込み と呼ぶ．等積アファインはめ込みに対して，Koike [4] は
Lipschitz–Killing 曲率と絶対全曲率を導入した．絶対全曲率は，はめ込みがその空間の中で大域的
にどれだけ曲がるかを測る量であり，凹凸や位相的複雑さの増大に伴って大きくなる．Chern と
Lashof は [1, 2] において，ユークリッド空間へのコンパクト多様体のはめ込みの絶対全曲率がベッ
チ数の総和以上であること，また絶対全曲率が 2 に等しいことと，像が En+r のある (n+ 1)次元
アファイン部分空間に埋め込まれた凸超曲面であることが同値であることを示した．Koike は affine

においても Chern–Lashof 型の定理が成り立つことを示している．

事実 1.1 ([4]). M を向き付けられた n次元コンパクト多様体とし，f : M → Rn+r を (n + r)次
元アファイン空間への 等積アファインはめ込み とする．

(1) unit ellipsoid S に関する f の絶対全曲率 τS(f) は

τS(f) ≥
n∑

k=0

bk(M,F )

を満たす．ただし bk(M,F ) は，任意の係数体 F に関するM の k 次の Betti数を表す．
(2) もし τS(f) < 3 ならば，M は n次元球面と同相である．
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ユークリッドの場合と比較すると，Koike の equiaffine の場合においては絶対全曲率の最小性に
よる特徴づけ，とくに凸性との関係はまだ得られていない．本講演では，絶対全曲率の最小性と凸性
の関係が equiaffineにおいても成り立つことを示す．

2 主定理
本節では最初に [4, 5] に従い，一般余次元の場合の等積アファインはめ込みと，それに付随する

Lipschitz–Killing 曲率等の概念について紹介する．一般余次元の等積アファインはめ込みのいくつ
かの性質は，[7] の Notes 1, 2 にも述べられている．
Γ(·)でベクトル束 ·の全ての切断の空間を表す．本論文では，全てのアファイン接続は torsion-free

であると仮定する．f : M → (Rn+r, ∇̃, ω̃) を，等積構造 (∇̃, ω̃) を備えたアファイン空間 Rn+r へ
の，n次元多様体M からの アファインはめ込み とする．(N, θ⊥) を f の transversal bundle と N

上の体積要素とする．このとき，M 上のアファイン接続 ∇ と体積要素 θ を次で定める：

∇̃Xdf(Y )− df(∇XY ) ∈ Γ(N) (X,Y ∈ Γ(TM)),

θ(X1, · · · , Xn) =
ω̃(df(X1), · · · , df(Xn), ξ1, · · · , ξr)

θ⊥(ξ1, · · · , ξr)
(X1, · · · , Xn ∈ TM)

ここで TM は M の接束であり，(ξ1, · · · , ξr)は N の frameである．∇ を 誘導された接続，θ を
(N, θ⊥) により誘導された体積要素 と呼ぶ．(∇, θ) を M の等積構造（すなわち ∇θ = 0）とする．
もしはめ込み f : (M,∇, θ) → (Rn+r, ∇̃, ω̃) が (∇, θ) を誘導する (N, θ⊥) を持つならば，f を 等積
アファインはめ込み と呼ぶ．以後そのような (N, θ⊥) を固定する．N に値をもつ対称テンソル場

α(X,Y ) := ∇̃Xdf(Y )− df(∇XY ) (X,Y ∈ TM)

を (f,N) の affine fundamental form と呼ぶ．超曲面の場合 (r = 1) では，θ⊥(ξ) = 1 として対称
(0, 2)型テンソル場 αξ を

αξ(X,Y )ξ = ∇̃Xdf(Y )− df(∇XY ) (X,Y ∈ TM) (2.1)

で定める．この αξ を (f, ξ) の affine fundamental form と呼ぶ．さらに affine shape operator A

と transversal connection ∇⊥ を

∇̃Xξ = − df(AξX) +∇⊥
Xξ (X ∈ TM, ξ ∈ Γ(N))

で定める．このとき，∇θ = 0 は ∇⊥θ⊥ = 0 と同値である [6, Proposition 3.1]．各
ϕ ∈

∧n+r−1
Rn+r に対し，ϕ = v1 ∧ · · · ∧ vn+r−1 と表し，ω̃(v1, · · · , vn+r) = 1 を満たす

vn+r ∈ Rn+r を取る．このとき ϕ の 高さ関数 h̃ϕ を

prvn+r
(v) = h̃ϕ(v) · vn+r (v ∈ Rn+r)

で定める．ここで prvn+r
は

Span{v1, · · · , vn+r−1} ⊕ Span{vn+r} = Rn+r



という分解に関して Span{vn+r}への射影を表す．この定義が ϕの表し方に依らないことは容易に分
かる．∧n+r−1

Rn+r の unit ellipsoid S を一つ固定する．これはアファイン座標系 (x1, · · · , xn+r)

に関して∑n+r
i=1 x2

i = 1 と表され，かつ ω̃′( ∂
∂x1

, · · · , ∂
∂xn+r

) = 1 を満たす集合とする．ここで ω̃′ は
ω̃(v1, · · · , vn+r) = 1 の下で

ω̃′(v̂1 ∧ · · · ∧ vn+r, · · · , v1 ∧ · · · ∧ v̂n+r) = (−1)(n+r)(n+r−1)/2

により定める ∧n+r−1
Rn+r 上の体積要素である．ν̃N :

∧r−1
N →

∧n+r−1
Rn+r を

ν̃N (η) := df(e1) ∧ · · · ∧ df(en) ∧ η

で定める．ここで (e1, · · · , en) は θ(e1, · · · , en) = 1 を満たす TM の frame とする．f の transver-

sal ellipsoid bundle を

B := ν̃−1
N (S) ⊂

r−1∧
N

で定める．制限 ν := ν̃N |B : B → S を (f,N, θ⊥, S) の Gauss写像 と呼ぶ．
定義 2.1 ([4]). η ∈ B に対し，G(η) : B → R を

G(η) := (−1)n det
θ
(h̃η ◦ α)

で定める．ここで detθ(h̃η ◦ α) は θ(e1, · · · , en) = 1 を満たす Tπ(η)M の frame (e1, · · · , en) に対
して行列 [(h̃η ◦ α)(ei, ej)]1≤i,j≤n の行列式を表す．G を (f,N, θ⊥, S) の Lipschitz–Killing 曲率と
呼ぶ．
ユークリッド空間の場合では，Lipschitz–Killing 曲率は shape operator の行列式に一致する．し

かし equiaffine 幾何では一般に，affine shape operator の行列式は Lipschitz–Killing 曲率と一致し
ない．次の例 2.2 を参照せよ．
例 2.2. R3 を自然な等積構造 ∇̃ と ω̃ = dx1 ∧ dx2 ∧ dx3 を備えた 3 次元アファイン空間とす
る．e1 = (1, 0, 0)T , e2 = (0, 1, 0)T , および e3 = (0, 0, 1)T を取る．ここで T は転置を表す．unit

ellipsoid S を

S =

{
a1 e2 ∧ e3 + a2 e3 ∧ e1 + a3 e1 ∧ e2

∣∣∣∣∣
3∑

i=1

a2i = 1

}
で固定する．
写像 f : R2 → R3 を f(x, y) =

(
x, y, 1

2 (x
2 + y2)

) で定める．ξ = (0, 0, 1)T とおく．任意のベク
トル場 X に対して ∇̃Xξ = 0 であるから，ξ は equiaffine transversal vector field である．このと
き Lipschitz–Killing 曲率 G は G = (1 + x2 + y2)−1 と与えられる．
一方で ∇̃Xξ = 0 より，affine shape operator A は恒等的に消え，従って detA = 0 である．よっ
て一般に Lipschitz–Killing 曲率 G は affine shape operator A の行列式と一致しないことが分かる．
B と S 上の体積要素をそれぞれ ωB と ω̃S とする（[4] 参照）．このとき，ωB と ω̃S の間には次
が成り立つ [4, Proposition 2.2]：

(ν∗ω̃S)η = G(η) · (ωB)η (η ∈ B). (2.2)

Koike は等積アファインはめ込みの絶対全曲率を次で定義した．



定義 2.3. M を向き付けられたコンパクトな n次元多様体とする．unit ellipsoid S に関する等積ア
ファインはめ込み f : (M,∇, θ) → (Rn+r, ∇̃, ω̃) の絶対全曲率 τS(f) を

τS(f) :=
1

vol(Sn+r−1(1))

∫
B

|G|ωB

で定める．ここで vol(Sn+r−1(1)) は単位球面 Sn+r−1(1) の体積を表す．
絶対全曲率 τS(f)は (N, θ⊥)の取り方に依らない [5, Theorem A]．一方で τS(f)は unit ellipsoid

S の取り方には依存する．しかし，ある unit ellipsoid S に対して τS(f) が M のベッチ数の総和に
等しいならば，その等式は任意の unit ellipsoid に対して成り立つ．例えば，ellipsoids は最小の絶
対全曲率 2をもつ（例 3.1 参照）．より一般に，中心等積アファインはめ込みは最小の絶対全曲率を
もつ（[5, Example 1,2] 参照）．
C ⊂ B を Gauss写像 ν : B → S の臨界点の集合とする．Sardの定理より，像 ν(C) は測度 0で

ある．さらに，f の高さ関数 hϕ = h̃ϕ ◦f : M → R がMorseでないことと ϕ ∈ ν(C) は同値である．
従って (2.2) より，絶対全曲率 τS(f) は，高さ関数 hϕ = h̃ϕ ◦ f の臨界点の個数の平均に等しい：

τS(f) =
1

vol(Sn+r−1(1))

∫
S\ν(C)

#crit(hϕ) ω̃S . (2.3)

ここで #crit(hϕ) は M 上の hϕ の臨界点の個数を表す．M はコンパクトであるから，ϕ に対して
M 上に少なくとも二つの臨界点が存在する．従って τS(f) = 2 は，任意の ϕ ∈ S \ ν(C) に対して
高さ関数 hϕ がちょうど二つの臨界点をもつことと同値である．

定理 2.4. M を向き付けられたコンパクトな n次元多様体とし，f : (M,∇, θ) → (Rn+r, ∇̃, ω̃) を
等積アファインはめ込みとする．もし f の絶対全曲率が 2 に等しいならば，像 f(M) は Rn+r の
ある (n+ 1)次元アファイン部分空間に埋め込まれた凸超曲面である．また，逆も成り立つ．

本定理は，Rn+1 における局所強凸超曲面（アファイン微分幾何ではしばしば仮定される対象）が，
一般の余次元における大域的な曲率の条件によって特徴づけられることを示す．

3 例
本節では，絶対全曲率が最小であるアファインはめ込みの例を二つ与える．最初の例は ellipsoid

であり，局所強凸で，affine fundamental form が非退化な例である．
例 3.1. Rn+1 を (n + 1) 次元アファイン空間とし，自然な等積構造 ∇̃，ω̃ を備えたものとする．
e1, · · · , en+1 を ω̃ の unimodular basis とする．unit ellipsoid S を

S =

{
n+1∑
i=1

ai e1 ∧ · · · ∧ êi ∧ · · · ∧ en+1

∣∣∣∣∣
n+1∑
i=1

a2i = 1

}

で固定する．Sn をユークリッド空間 En+1 における単位球面とし，xi : S
n → R (i = 1, · · · , n+ 1)

を i次座標関数とする．写像 f : Sn → Rn+1 を

f(p) := x1(p)e1 + · · ·+ xn+1(p)en+1 (p ∈ Sn)



で定める．このとき位置ベクトル f(p) は equiaffine transversal vector field である．
ϕ =

∑n+1
i=1 ai e1 ∧ · · · ∧ êi ∧ · · · ∧ en+1 とする．点 p ∈ Sn が高さ関数 hϕ = h̃ϕ ◦ f の臨

界点であることと，任意の X ∈ TpS
n に対して dfp(X) ∧ ϕ = 0 が成り立つことは同値である．すな

わち
a1 · (dx1)p(X) + · · ·+ an+1 · (dxn+1)p(X) = 0 (3.1)

が任意の X ∈ TpS
n に対して成り立つ．これは，全ての i = 1, · · · , n+ 1 について xi(p) = ai また

は xi(p) = −ai が成り立つことと同値である．従って任意の ϕ ∈ Sn に対し，高さ関数 hϕ は Sn 上
で (3.1) を満たす二点 p と −p をちょうど二つの臨界点としてもつ．よって絶対全曲率 τS(f) は 2

に等しい．
一方で，次の二つ目の例は，affine fundamental form が退化する特異点をもつ凸曲面である．さ
らに，この曲面が良い性質をもつ退化計量を備えることを示す．
例 3.2. Σ をアファイン空間 R3 における閉曲面とし，

Σ := {(x, y, z) ∈ R3 | (z −
√

x2 + y2)4 + (z +
√

x2 + y2)4 = 16}

で定める．このとき Σ はアファイン空間における凸曲面である．affine fundamental form の特異
点集合 Sing(Σ) は

Sing(Σ) = {(cos v, sin v,±1) ∈ Σ | v ∈ [−π, π]}

で与えられる．
Σ の局所座標表示は f± : [−( 12 )

1/4, ( 12 )
1/4]× [−π, π] → R3 として

f±(u, v) :=
(
(u− (1− u4)1/4) cos v, (u− (1− u4)1/4) sin v,±(u+ (1− u4)1/4)

)
で与えられる．以後 f+ を考える．関数 E(u) と F (u) を

E(u) := u− (1− u4)1/4, F (u) := u+ (1− u4)1/4

で定め，
δ(u) :=

√
(E′(u))2 + (F ′(u))2

とおく．ここで ′ は u による微分を表す．ベクトル場 ξ を

ξ(u, v) :=
1

δ(u)

(
F ′(u) cos v, F ′(u) sin v, −E′(u)

)
.

で定める．このとき ξ は equiaffine transversal vector field である．affine fundamental form αξ

の行列式は（cf. (2.1)）

detαξ =
6u2

δ(u)2(1− u4)13/4
·
(
−u+ (1−u4)1/4

)(
−1 + u4 + u(1− u4)3/4

)
·
(
−1 + u3(1− u4)1/4 + u(1− u4)3/4

)
で与えられる．さらに C∞ 級関数 λ : [−( 12 )

1/4, ( 12 )
1/4] → R が存在して detαξ = λ2 が成り立つ．

従って λ(u) = 0 は u = 0 と同値である．言い換えると，detαξ が 0 になるのは u = 0 のときに限



る．よって像 f(0, v) は Sing(Σ) と一致する．また λ′(0) は 0 ではない．このとき αξ は Kossowski

metric の条件を満たす（[3] 参照）．
この例は，affine metric が退化する場合でも意味のある幾何構造が存在し得ることを示し，非退化

性を超えたアファイン微分幾何の新たな方向性を示唆する．

図 1 Example 3.2 における凸曲面 Σ および特異点集合 Sing(Σ)（青い曲線）．Σ の affine

fundamental form は半正定値である．
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